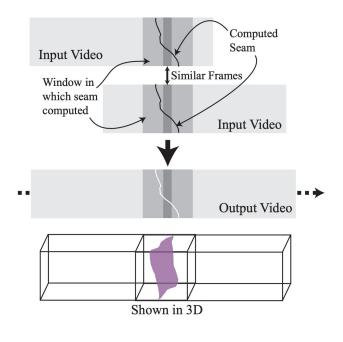
Automated Video Looping with Progressive Dynamism

CS448V: Lecture 5

Background

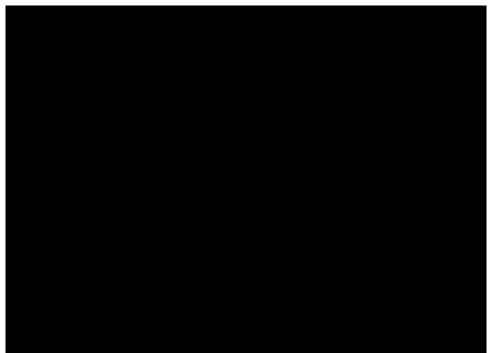


Kwatra et al.

Schodl et al.

Pixel-Based Looping

Pixel-Based Looping

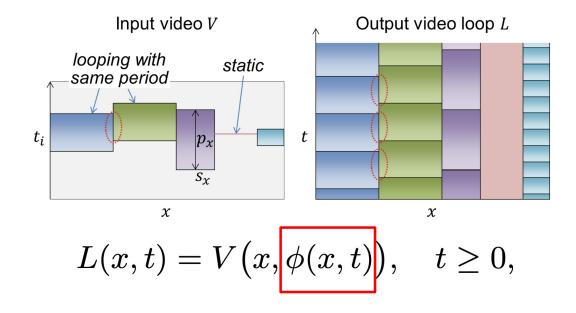


Overview

- 1. Per-Pixel Loops
- 2. Finding a Video Loop
- 3. Progressive Video Loops

Per-Pixel Loops

Problem Statement

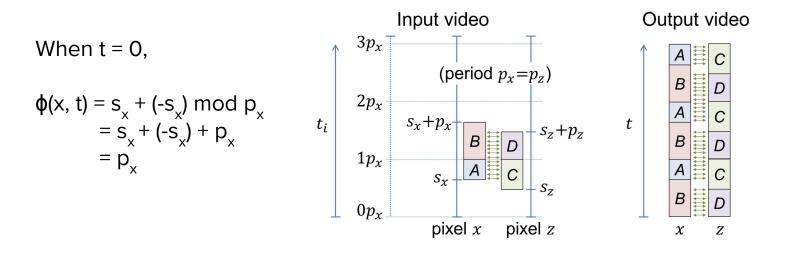


Problem Statement

$$\phi(x,t)$$
 is defined by s_x, p_x

Problem Statement

$$\phi(x,t)$$
 = s_x + (t - s_x) mod p_x



Problem Statement

$$L(x,t) = Vig(x,\phi(x,t)ig), \quad t \geq 0,$$
 $\phiig(x,tig)$ is defined by ${ extsf{s}_{ extsf{x}}}, { extsf{p}_{ extsf{x}}}$

Loops for the entire video can be defined by:

 $\mathbf{s} = \{s_x\} \qquad \mathbf{p} = \{p_x\}$

"Energy": Cost of a Solution

A solution consists of:
$$\mathbf{s} = \{s_x\}$$
 $\mathbf{p} = \{p_x\}$

Want to minimize:

$$E(\mathbf{s}, \mathbf{p}) = E_{\text{consistency}}(\mathbf{s}, \mathbf{p}) + E_{\text{static}}(\mathbf{s}, \mathbf{p})$$

Spatiotemporal consistency

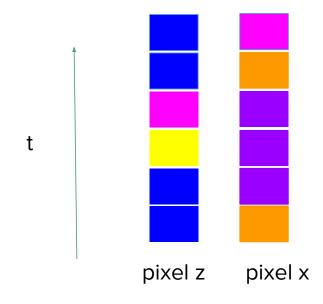
Penalty for choosing static loops

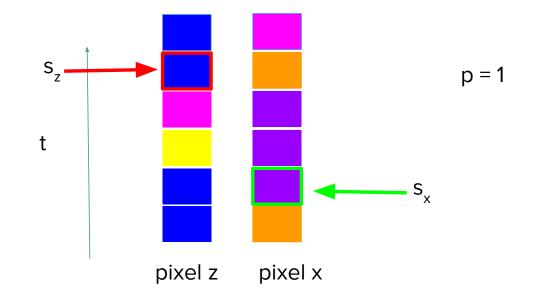
Spatiotemporal Consistency

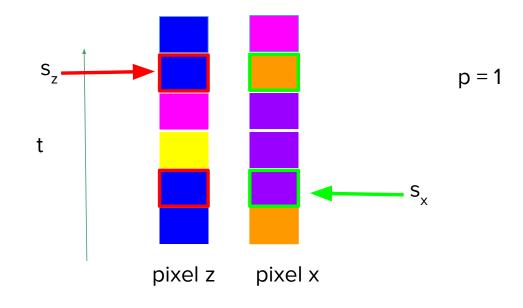
$$E_{\text{consistency}}(\mathbf{s}, \mathbf{p}) = \beta E_{\text{spatial}}(\mathbf{s}, \mathbf{p}) + E_{\text{temporal}}(\mathbf{s}, \mathbf{p})$$

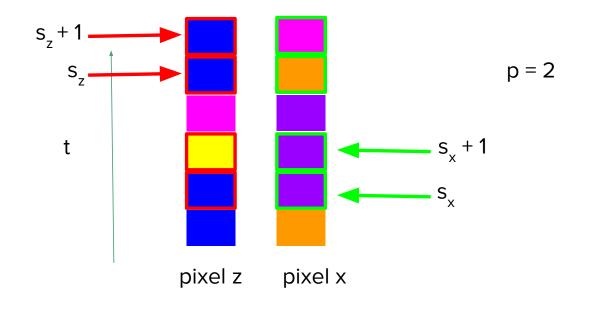
$$E_{\text{spatial}}(\mathbf{s}, \mathbf{p}) = \sum_{\|x-z\|=1} \Psi(x, z)$$

Compatibility of adjacent pixels x, z over loop









$$\Psi(x,z) = \frac{1}{T} \sum_{t=0}^{T-1} \left(\frac{\|V(x,\phi(x,t)) - V(x,\phi(z,t))\|^2}{\|V(z,\phi(x,t)) - V(z,\phi(z,t))\|^2} \right)$$

$$T = \text{LCM}(p_x, p_z)$$

$$p_z = 2$$

$$s_z$$

$$t$$

$$p_x = 1$$

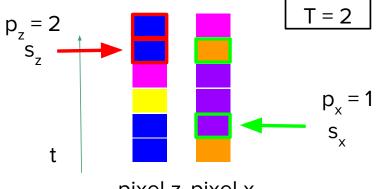
$$s_x$$

$$p_x = 1$$

$$s_x$$

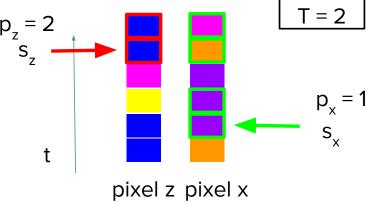
$$\Psi(x,z) = \frac{1}{T} \sum_{t=0}^{T-1} \left(\frac{\|V(x,\phi(x,t)) - V(x,\phi(z,t))\|^2}{\|V(z,\phi(x,t)) - V(z,\phi(z,t))\|^2} \right)$$

 $T = \mathrm{LCM}(p_x, p_z)$



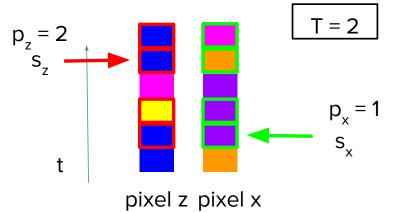
pixel z pixel x

$$\Psi(x,z) = \frac{1}{T} \sum_{t=0}^{T-1} \left(\frac{\|V(x,\phi(x,t)) - V(x,\phi(z,t))\|^2}{\|V(z,\phi(x,t)) - V(z,\phi(z,t))\|^2} \right)$$
$$T = \text{LCM}(p_x, p_z) \qquad \qquad p_z = 2$$



$$\Psi(x,z) = \frac{1}{T} \sum_{t=0}^{T-1} \left(\frac{\|V(x,\phi(x,t)) - V(x,\phi(z,t))\|^2}{\|V(z,\phi(x,t)) - V(z,\phi(z,t))\|^2} \right)$$

 $T = \mathrm{LCM}(p_x, p_z)$



Temporal Consistency

$$E_{\text{temporal}} = \sum_{x} \left(\frac{\|V(x, s_x) - V(x, s_x + p_x)\|^2}{\|V(x, s_x - 1) - V(x, s_x + p_x - 1)\|} \right)$$

t
$$p_x = 3$$

pixel x

$$E(\mathbf{s}, \mathbf{p}) = E_{\text{consistency}}(\mathbf{s}, \mathbf{p}) + E_{\text{static}}(\mathbf{s}, \mathbf{p})$$

Spatiotemporal consistency

Penalty for choosing static loops

Static Loop Penalty

$$E_{\text{static}} = \sum_{x \mid p_x = 1} E_{\text{static}}(x)$$

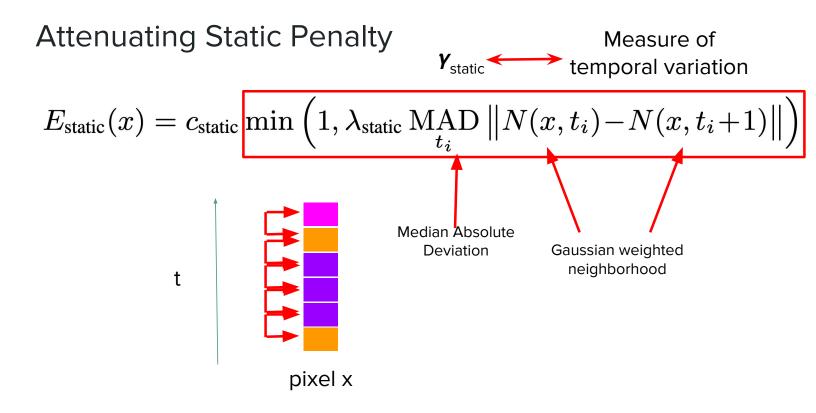
$$E_{\text{static}}(x) = c_{\text{static}} \mathbf{y}_{\text{static}}$$

Constant penalty for assigning a pixel as static Scale Factor

Attenuating Static Cost

If original pixel had HIGH variance, a static loop is LESS natural

If original pixel had LOW variance, a static loop is more acceptable



Attenuating Spatiotemporal Consistency Cost

If original pixel had LOW variance, a loop with high variance is MORE perceptible

If original pixel had HIGH variance, a loop with high variance is LESS perceptible

Attenuating Spatiotemporal Consistency Cost

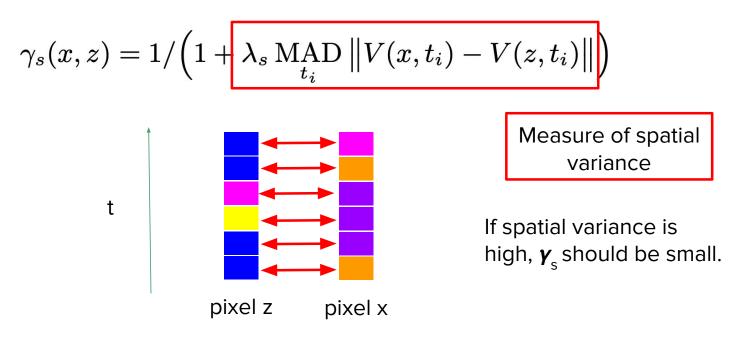
$$E_{ ext{spatial}}(\mathbf{s},\mathbf{p}) = \sum_{\|x-z\|=1} \Psi(x,z) \gamma_s(x,z)$$

If spatial variance is high, γ_s should be small.

$$E_{\text{temporal}} = \sum_{x} \begin{pmatrix} \|V(x, s_x) - V(x, s_x + p_x)\|^2 + \\ \|V(x, s_x - 1) - V(x, s_x + p_x - 1)\|^2 \end{pmatrix} \gamma_t(x)$$

If temporal variance is high, γ_{t} should be small.

Attenuating Spatial Consistency Cost



Attenuating Temporal Consistency Cost

$$\gamma_{t}(x) = 1/\left(1 + \lambda_{t} \operatorname{MAD}_{t_{i}} \| V(x, t_{i}) - V(x, t_{i} + 1) \| \right)$$

$$Measure of temporal variance
If temporal variance is high, γ_{t} should be small.$$

Optimization: Solving for $\mathbf{s} = \{ s_x \}$ and $\mathbf{p} = \{ p_x \}$

High-Level Goal

Each node is a pixel

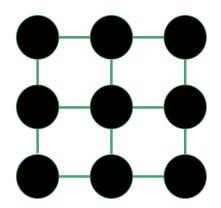
Want to assign each pixel a value (s_x, p_x)

where $s_x \in \mathbf{s}$, $p_x \in \mathbf{p}$

Such that the "total energy" is minimized:

$$E(\mathbf{s}, \mathbf{p}) = E_{\text{consistency}}(\mathbf{s}, \mathbf{p}) + E_{\text{static}}(\mathbf{s}, \mathbf{p})$$

Can formulate as Multilabel graph cut problem



Review: Binary Graph Cut

- Each node: a pixel
- Goal: Partition nodes into two groups
- Want to minimize:
 - Energy = cost of partition
 - Could be formulated as max flow, min cut problem
- Global minima found in polynomial time

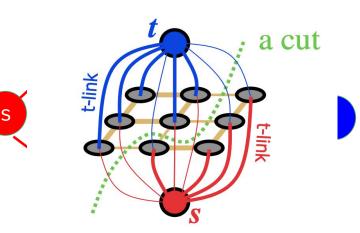
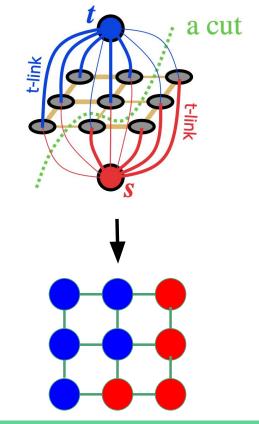


Image credit: http://www.csd.uwo.ca/~yuri/Presentations/ECCV06 tutorial partl yuri.pdf

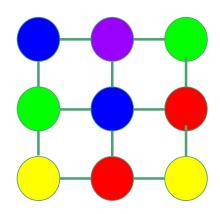
Review: Binary Graph Cut

- Each node: a pixel
- Goal: Partition nodes into two groups
- Want to minimize:
 - Energy = cost of partition
 - Could be formulated as max flow, min cut problem
- Global minima found in polynomial time



Multilabel Graph Cut

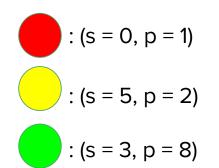
- Generalization of Binary Graph Cut (2 labels)
- NP-hard problem (3 or more labels)
- Alpha-expansion approximation algorithm
 - Within factor of 2 of global minima

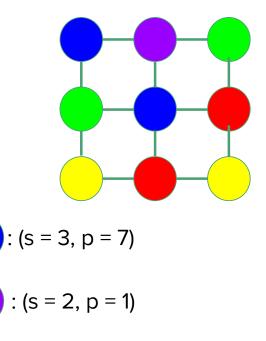


Example: 5 labels

Multilabel Graph Cut

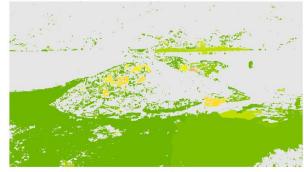
- Assign each pixel a label: (s_x, p_y)
- From a set of candidate loops: {**s**} x {**p**}





Multilabel Graph Cut on the whole search space doesn't work

Search algorithm gets stuck in local minima (green = shorter periods):

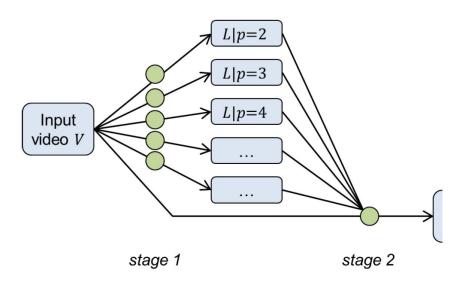


standard multilabel graph cut



our two-stage approach

Two-stage Approach

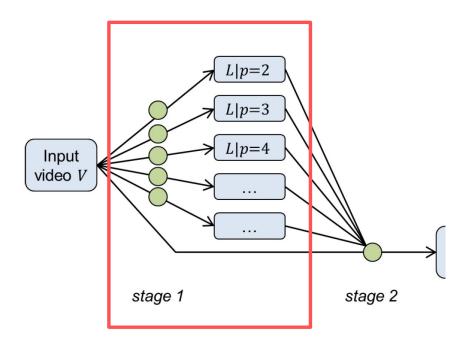


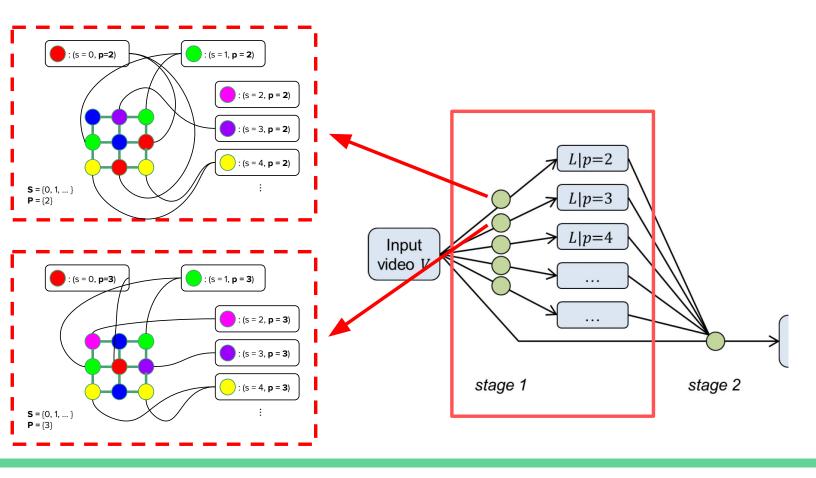
Two-stage Approach

Stage 1: Fix a single loop period for the entire video, and solve for the best start frames

Saves computation cost for spatial consistency

Output: for each period *p*, each pixel has an optimal start frame *s*



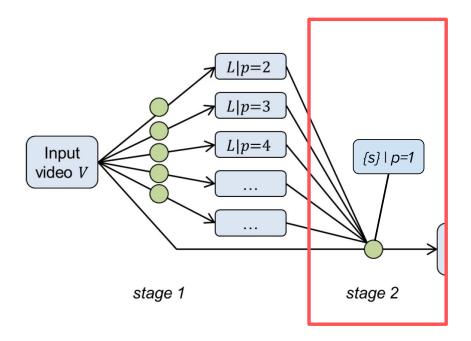


Two-stage Approach

Stage 2: Take optimal start frames from stage 1, and solve for optimal start frame + loop period for each pixel

Choices for each pixel:

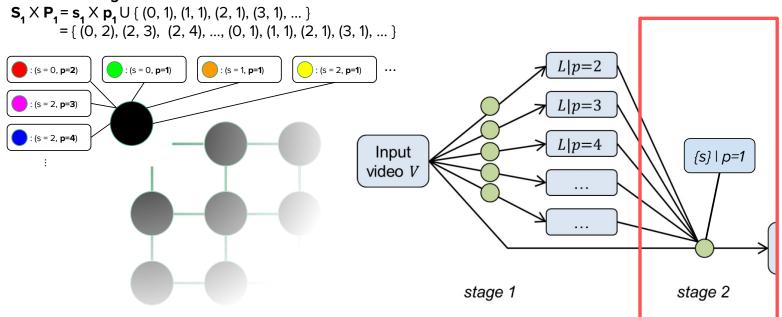
- | {p} | start frames (stage one)
- $|\{s\}|$ start frames (p=1)



From stage one:

 $\mathbf{s_1} \times \mathbf{p_1} = \{ (0, 2), (2, 3), (2, 4), \dots \}$

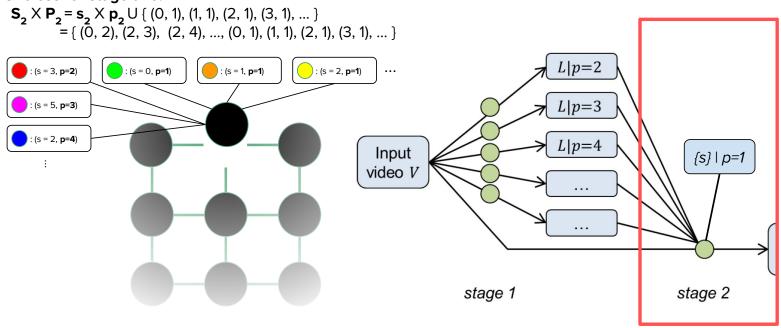
Choices for stage two:

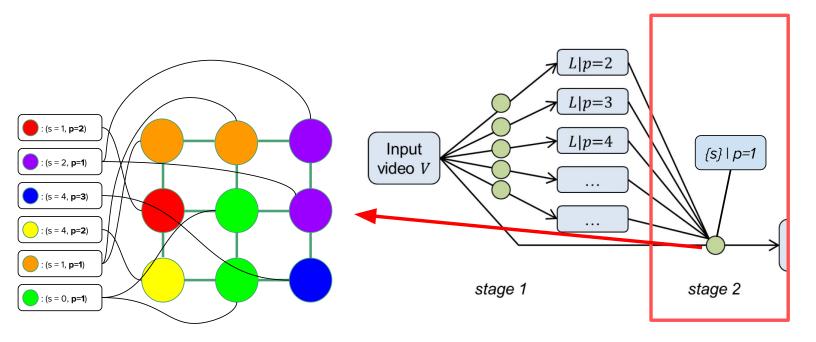


From stage one:

 $\mathbf{s_2} \times \mathbf{p_2} = \{ (3, 2), (5, 3), (2, 4), \dots \}$

Choices for stage two:





Results

Results

Results

Results

Progressive Video Loops

Example



 $\mathcal{L} = \{ L_d \mid 0 \le d \le 1 \}$

Pixels: either static or looping

Status: each pixel has an activation threshold a (if d > a, pixel is looping)

Overview

Recall C static: $E_{\text{static}}(x) = c_{\text{static}} \min \left(1, \lambda_{\text{static}} \operatorname{MAD}_{t_i} \| N \right)$

- 1) Solve for most dynamic loop (d = 1)
 - a) C static to large value: 10
- 2) Create static loop (d = 0)
 - a) For each pixel, if static in most dynamic loop, leave as-is
 - b) For rest of the pixels, solve for best static frame
- 3) For each pixel, find activation energy a
 - a) Recursive binary partition over C static, re-computing d every time

Definition of d

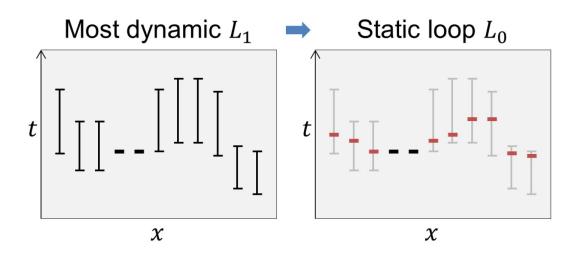
$$\operatorname{Var}(L) = \sum_{x} \operatorname{Var}_{s_x \le t_i < s_x + p_x} \left(V(x, t_i) \right)$$

Temporal Variation of Video Loop

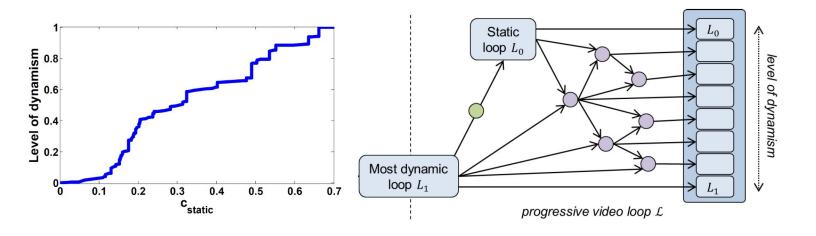
$$LOD(L) = Var(L) / Var(L_1)$$

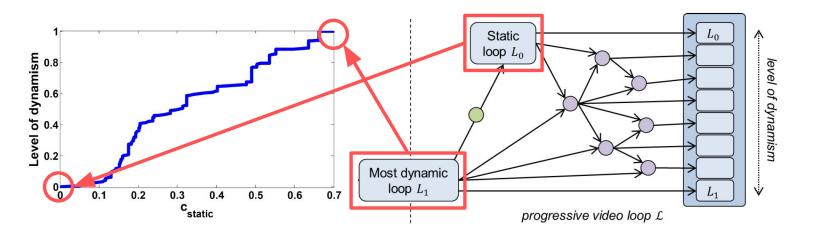
Equation to compute *d* for a Video Loop *L*

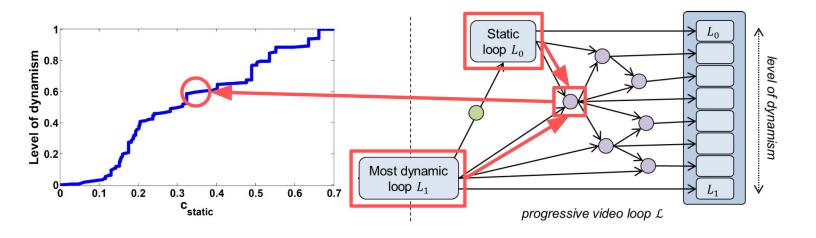
Construct Static loop

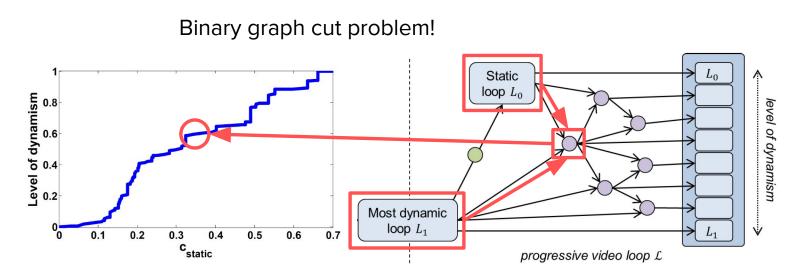


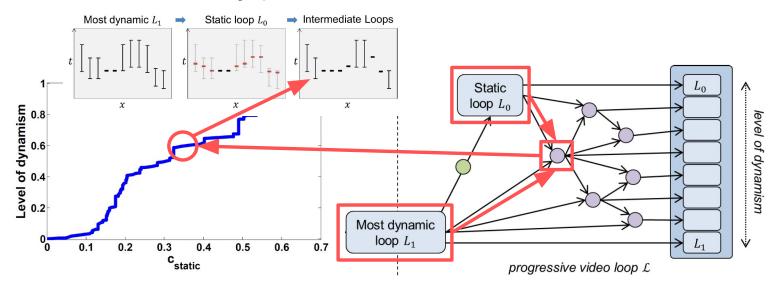
C static = 0; penalize differences between static pixel and median color value

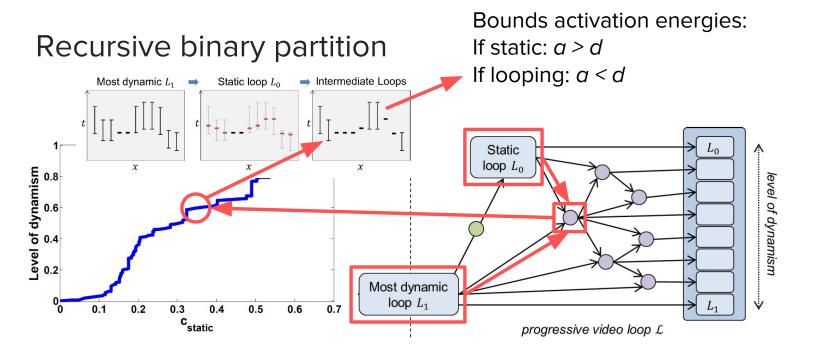


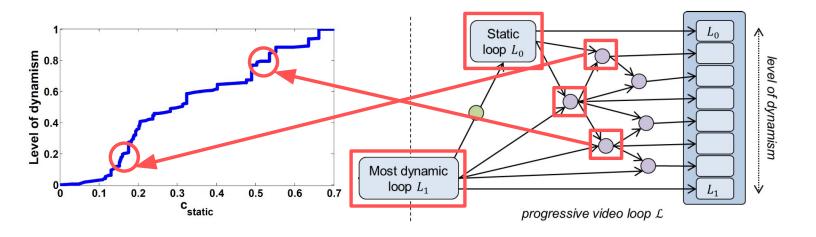


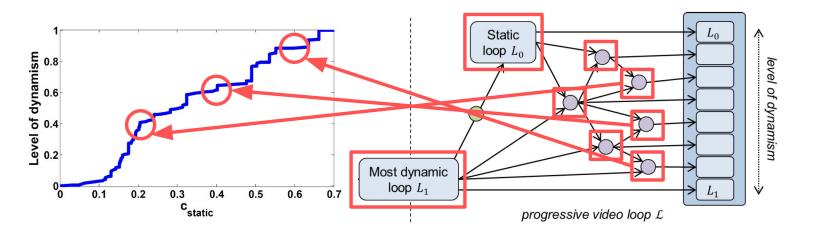


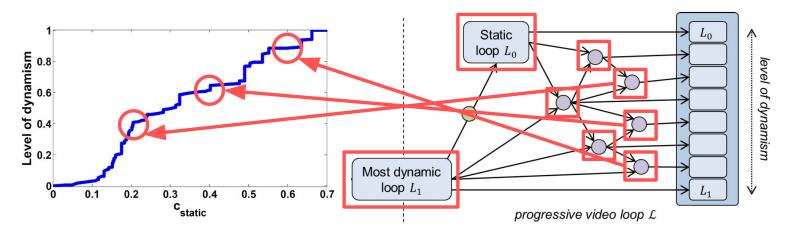












Continue until *d* or C static stop changing Set activation energies *a* to median of remaining bounds

Ordering of progressive dynamism

Result

Results: Limitations

Original

Looping

Thank you for listening!